6. The Structure Theorem for Abelian Groups

1. Find a direct sum of cyclic groups which is isomorphic to the abelian group presented by the matrix $\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2\end{array}\right]$.
2. Write the group generated by x, y, with the relation $3 x+4 y=0$ as a direct sum of cyclic groups.
3. Find an isomorphic direct product of cyclic groups, when V is the abelian group generated by x, y, z, with the given relations.
(a) $3 x+2 y+8 z=0,2 x+4 z=0$
(b) $x+y=0,2 x=0,4 x+2 z=0,4 x+2 y+2 z=0$
(c) $2 x+y=0, x-y+3 z=0$
(d) $2 x-4 y=0, \quad 2 x+2 y+z=0$
(e) $7 x+5 y+2 z=0,3 x+3 y=0,13 x+11 y+2 z=0$
4. Determine the number of isomorphism classes of abelian groups of order 400 .
5. Classify finitely generated modules over each ring.
(a) $\mathbb{Z} /(4)$
(b) $\mathbb{Z} /(6)$
(c) $\mathbb{Z} / n \mathbb{Z}$.
6. Let R be a ring, and let V be an R-module, presented by a diagonal $m \times n$ matrix A : $V \approx R^{m} / A R^{n}$. Let $\left(v_{1}, \ldots, v_{m}\right)$ be the corresponding generators of V, and let d_{i} be the diagonal entries of A. Prove that V is isomorphic to a direct product of the modules $R /\left(d_{i}\right)$.
7. Let V be the $\mathbb{Z}[i]$-module generated by elements v_{1}, v_{2} with relations $(1+i) v_{1}+$ $(2-i) v_{2}=0, \quad 3 v_{1}+5 i v_{2}=0$. Write this module as a direct sum of cyclic modules.
8. Let W_{1}, \ldots, W_{k} be submodules of an R-module V such that $V=\Sigma W_{i}$. Assume that $W_{1} \cap W_{2}=0,\left(W_{1}+W_{2}\right) \cap W_{3}=0, \ldots,\left(W_{1}+W_{2}+\cdots+W_{k-1}\right) \cap W_{k}=0$. Prove that V is the direct sum of the modules W_{1}, \ldots, W_{k}.

* 9. Prove the following.
(a) The number of elements of $\mathbb{Z} /\left(p^{e}\right)$ whose order divides p^{ν} is p^{ν} if $\nu \leq e$, and is p^{e} if $\nu \geq e$.
(b) Let W_{1}, \ldots, W_{k} be finite abelian groups, and let u_{j} denote the number of elements of W_{j} whose order divides a given integer q. Then the number of elements of the product group $V=W_{1} \times \cdots \times W_{k}$ whose order divides q is $u_{1} \cdots u_{k}$.
(c) With the above notation, assume that W_{j} is a cyclic group of prime power order $d_{j}=p^{e_{j}}$. Let r_{1} be the number of d_{j} equal to a given prime p, let r_{2} be the number of d_{j} equal to p^{2}, and so on. Then the number of elements of V whose order divides p^{ν} is $p^{s_{\nu}}$, where $s_{1}=r_{1}+\cdots+r_{k}, s_{2}=r_{1}+2 r_{2}+\cdots+2 r_{k}, s_{3}=r_{1}+2 r_{2}+$ $3 r_{3}+\cdots+3 r_{k}$, and so on.
(d) Theorem (6.9).

7. Application to Linear Operators

1. Let T be a linear operator whose matrix is $\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$. Is the corresponding $\mathbb{C}[t]$-module cyclic?
